19edo: Difference between revisions

From Xenharmonic Reference
mNo edit summary
mNo edit summary
Line 2: Line 2:


19edo is interesting as a flatter [[Meantone]] system; it is in fact very close to 1/3-comma Meantone (i.e. Meantone with exact 6/5). It has [[interordinal]]s and supports [[Semaphore]], which means that it treats half of its perfect fourth as a septimal (8/7) major second, leading to a very consonant 9-note MOS semiquartal (5L4s) that can be created from stacking its 8/7. 19edo is also a tuning of
19edo is interesting as a flatter [[Meantone]] system; it is in fact very close to 1/3-comma Meantone (i.e. Meantone with exact 6/5). It has [[interordinal]]s and supports [[Semaphore]], which means that it treats half of its perfect fourth as a septimal (8/7) major second, leading to a very consonant 9-note MOS semiquartal (5L4s) that can be created from stacking its 8/7. 19edo is also a tuning of
* [[Kleismic]], but with lower accuracy due to its 6/5 being barely sharpened at all
* [[Kleismic]] (six 6/5's = 3/1) but with lower accuracy due to its 6/5 being barely sharpened at all
* [[Magic]]
* [[Magic]] (five 5/4's = 3/1)


== Basic theory ==
== Basic theory ==

Revision as of 22:33, 22 January 2026

19edo is an equal division of 2/1 into 19 steps of 1200c/19 ~= 63.2c each.

19edo is interesting as a flatter Meantone system; it is in fact very close to 1/3-comma Meantone (i.e. Meantone with exact 6/5). It has interordinals and supports Semaphore, which means that it treats half of its perfect fourth as a septimal (8/7) major second, leading to a very consonant 9-note MOS semiquartal (5L4s) that can be created from stacking its 8/7. 19edo is also a tuning of

  • Kleismic (six 6/5's = 3/1) but with lower accuracy due to its 6/5 being barely sharpened at all
  • Magic (five 5/4's = 3/1)

Basic theory

Edostep interpretations

19edo's edostep has the following interpretations in the 2.3.5.7.13 subgroup:

  • 25/24 (the interval between 6/5 and 5/4)
  • 26/25 (the interval between 25/16 and 13/8)
  • 27/26 (the interval between 13/8 and 27/16)
  • 28/27 (the interval between 9/8 and 7/6)

25/24 ~ 26/25 ~ 27/26 is the characteristic equivalence of 2.3.5.13 Kleismic.

Prime harmonic approximations

Approximation of prime harmonics in 19edo
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) 0.0 -7.2 -7.4 -21.5 +17.1 -19.5 +21.4 +18.3 +3.3
Relative (%) 0.0 -11.4 -11.7 -34.0 +27.1 -30.8 +33.8 +28.9 +5.2
Steps

(reduced)

19

(0)

30

(11)

44

(6)

53

(15)

66

(9)

70

(13)

78

(2)

81

(5)

86

(10)